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-, where h(x) is a given function, { gi] is a s e t  of linearly independent func- 

- ,  

tion, and x is a vector of dimension n. Simply, we w i s h  to find the best  
\ 

. .  . 
meag-square approximation to h(x) over the regionR. i . c. 

Substantial difficulties may  a r i s e  in the solution of this problem. 

.- The region R may be i r regular ,  the vector x of high dimension, the 

functions F(x) or h(x) complex--all making the prerequisite integrations 

difficult, 

many direct  methods. 

The order  of approximation R may be very high, frustrating 

The probability distribution F may  be unknown, . . 
.. . .  

. defined only by a finite s e t  of samples. Finally, h(x) m a y  be determined 

only by. experiment upon some system (a ''black box"), and hence difined 
'r. 

' . at only a limited number of points [ 1) .  
. .  . .  

. .  

. The work below .studies a n  approach which is of varying usefulness 

* in  all the above cases .  

ra ther  than its analytic form.  

W e  use samples of :he probability distribution 

The samples may resu l t  f rom some physical 

. _  



' .  . 

. process  or be generated artificially [ 2,6,7] .: In either case,  we assume 

: that the number of samples and their dimension is such that the problem 

must be solved without their storage; that is, w e  require  that a sample be 

used in computation only when i t  is f i r s t  generated and not a t  all thereafter. 

W e  further assume that Rj the number of coefficients to be determined, is 

sufficiently la rge  that the inversion of an  R XR m a t r i x  is computationally 

, . .  
". 

. 

. -_ 
* infeasible. This la t te r  assumption is related to high dimensionality: a 

! 
i 

. general  fifth-order polyn 

252 coefficients. 

. *  . .  
. .  

*- 
The Algorithm 

x 

J The procedure proposed solves exactly the problem of minimizing 

M R 2 

j=1 . J i=l 

. 1  
M 
- (h(Y.1 - c a.'s.(y.)) 3. 1. 1 J 

. .  

-, where Y = [y,,y,, . . . ,y ] a r e  sample points generated according to the M 

distribution F. 

the'accuracy of the approximation increasing with M.. In the case where F 

is unknown'and Y represents  our only knowledge of it, 

consider (2) the exact problem. 

This is clearly an approximation Bf the problem in ( l ) ,  

5 
may a s  well 

_ .  

c 

. Setting the partials of (2) with respect  to each cldefficient equal to 

zero gives the necessary condition for a solution vector a = (a U , . . . ,a ): 
1' 2 R: 
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Ca,, a,, ..# * 6,) such that 
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By (20) and' (21), 
/ 

.. 
6.. = (g.,d.[ g - c 8 - * * * -  C 8. 1) 13 J i , i  li 1 i-1,i 1-1 (23 1 

. .  
= ii.[a..- c c - ...- c ' *c  -3 9 1 IJ li lj i-1,i i-1,j 
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. a solution to the original problem (2). The a. may be determined by setting 
1 

. .  - 
c ai = c 8. b.(x) * ,  

1 1  

. .  

and equating coefficients of g.. By induction, one may show that equations 
1 

. .  
(15) and (16) hold. 

The ' reader  may verify that the algorithm can be execut 

Equations (S) - (16) constitute this constructive process. 
! e .  

. ,. :listed. 

-\ 

Uniqueness of Solution 
. .  

> Clearly, solutions to (2) wi l l  not always be unique. If the sample P 
t' t -  

..I . -  7 

points l i e  on a hypersurface of dimension l e s s  than R ,  infintely many . .  

i 
I solutions a r e  possible. 
i _ I  * .  . I _  

. . -  

> 

On the other hand, the construction of the previous section indicates 

. .  that a unique solution exists if the vectors  g ,g  , . , . , g  

pendent, since in that ca se  cl. always esists.  

a r e  linearly inde- 
1 .  2 R 

Since the g.(s) a r e  linearly 
I 1 
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. independent functions of high dimension, the previous condition wi l l  be 

_ -  . .  . . .  
. .  satisfied in  practice “almost a lways  ‘I. . .  - 

4 -  . -  . -  I 

. .  . . -  
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. Operation Count 

The algorithm presented wi l l  often give significantly better results 

than solution of (3) directly [ 5 3  if operation count is a valid standard of 

tion of (3) by Gaussian elimination requires 
! 

2 R  - 3 - R  - -  
3 3 

. a  

- <  

. .  . .  

. *  
. - 4 R 3  

a 

’ operations, counting only multiplications and divisions [ 3 1. The algorithm 
a 

presented requires - . 
R 3  R2 4 i-. ---R 

3 
- i - -  6 2 

t 

. .  

:< J .  . _  

operations (multiply and divide) and R square roots. Other than the square 
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unnecessary; working ‘storage is limited to 
- ’  

‘-or$er approximation, if found necessary,  may be derived with little recal-  

- _. culation. . n  . 
. . .  I .  

- 4  ’ 

If the distribution function is known, the usefulness of the algorithm 

’ will  depend on the ease  of generating random numbers with that distribution 
.~ . -  - ‘ 

relative to the difficulty of direct  solution or  finding functions orthonormal 

with respect to the distribution function. 

mentioned in the introduction may force recourse to the Monte Carlo 

approach. 

. .  

Several of the other complications 
! .  

E . .  
. This algorithm has proved useful in abs t rac t  patt.ern recognition 

. .  
where both h(x) and F(x) a r e  unknown 1 4 1 .  . .  
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